

Imaging Systems for CubeSats

Matt Clark Project Manager

Malin Space Science Systems, Inc.

Agenda

- Introduction of Malin Space Science Systems
- Overview of the ECAM Space Camera Platform
- Recent CubeSat proposals and studies

Malin Space Science Systems

- Who we are
 - Headquartered in San Diego
 - 27 years in the space business
 - 73 employees
- What we do
 - Imaging system development
 - Mission operations
 - Science data analysis
 - Micro Missions Systems
- Track record
 - Cumulative 100+ instrument years of deep space operations
 - Currently operating
 - Three cameras orbiting the Moon
 - · Three cameras orbiting Mars
 - Four cameras on the surface of Mars
 - One camera orbiting Jupiter
 - NASA JPL Small Business Prime Subcontractor of the Year Award for 2015

The Planetary CubeSats Symposium, August 16th, 2018

MSSS Flight Experience

- 39 flight instruments
- 21 missions (Mars, Jupiter, Earth, Earth's Moon, asteroid Bennu)
- 1,000,000+ images commanded & downlinked
- 760,000+ operational hours

Our Customers

- NASA Goddard Space Flight Center (LRO, Restore-L)
- NASA Jet Propulsion Laboratory (MSL, Mars 2020, Juno, etc...)
- Arizona State University (Mars2020, Psyche, Shadowcam)
- Lockheed Martin (OSIRIS-REX, Lucy)
- Naval Research Laboratory (RSGS)
- ITT Exelis (GOSAT)
- Northrop Grumman Innovation Systems (Classified programs)
- Boeing (Classified programs)

Engineering Camera (ECAM)

- Developed under MSSS IRAD, ECAM is a modular space camera platform built to strict NASA standards.
- While it was originally targeted towards engineering applications, ECAM systems have been used for:
 - In-flight diagnostics
 - Deployment/actuator monitoring
 - Space situational awareness
 - Science observations
 - Public outreach
 - Optical navigation

ECAM Architecture—DVR

- DVR interfaces to cameras (power, data, commanding).
- DVR processes and stores data (Bayer pattern interpolation, compression, and buffering—from 8 to 32 Gbytes of flash).
- DVR provides one power (28 V) and one data interface to the S/C.
- DVR baseline I/F is SpaceWire, but it can accommodate any customer specified four-line LVDS or RS-422 interface.
- DVRs can be daisy-chained, making a DVR8 or DVR12, still with a single S/C command/data interface.

ECAM Architecture—Camera Heads

ECAM-C50

- 5MP CMOS sensor (color or B/W)
- 2.2 μ m pixel pitch
- (2592 x 1944)
- Rolling Shutter
- Commandable exposure

ECAM-P50

- 5MP CMOS sensor (color or B/W)
- 4.8µm pixel pitch
- (2592 x 2048)
- Global Shutter
- Commandable or Auto exposure

ECAM-IR3a

- VGA format uncooled microbolometer
- 17μm pixel pitch (640 x 480)
- Optional calibration flag

^{*}Variety of standard optics available without NRE

Quality and Heritage

- ECAM system components meet the requirements of NASA EEE-INST-002, Level 2.
 - The parts list was approved by the GSFC Parts Control Board for the OSIRIS-REX program.
- ECAM hardware can be customized for different environments.
 Systems have been delivered for:
 - Deep space
 - Low Earth Orbit
 - Geosynchronous Orbit
- All standard ECAM subsystems have a NASA Test Readiness Level of 9.

ECAM Systems Delivered to Date

Recent CubeSat Imaging System Case Studies

- MSSS has recently proposed ECAM systems for several CubeSat SIMPLEx proposals:
 - Mars Micro Orbiter (MMO), Malin Space Science Systems
 - PrOVE, UM/NASA GSFC
- These illustrate that there are options for imaging systems that fit on CubeSats that also have heritage, reliability and performance.

Mars Micro Orbiter (MMO)

- PI: Mike Malin, MSSS
- Instrument Purpose:
 - To conduct global observations of Mars from orbit in visible and infrared wave-lengths to monitor its atmosphere.
- The payload consists of:
 - One visible camera
 - Two thermal IR cameras with a shared filter wheel

MMO Visible Camera—Description

- ECAM-C50 visible camera w/WFOV lens
 - 5MP CMOS sensor, 2.2μm pixel pitch (2592 x 1944)
 - Bayer Pattern Filter for RGB color
 - WFOV lens (55° x 76°)
 - FPGA-based architecture
 - 5V power, 100 Mbps SpaceWire interface
 - Mass: 400g
 - 57mm x 78mm x 108mm

MMO Thermal IR Cameras—Description

- Two ECAM-IR3a thermal infrared camera w/Mars2020 Mastcam filter wheel
 - VGA format with 17μm pixel pitch (640 x 480) Uncooled Microbolometer
 - 2 MFOV lenses (20° x 27°)
 - FPGA-based architecture
 - 5V power, 100Mbps SpaceWire interface
 - Mass: ~1400g
 - 91mm x 130mm x 108mm

MMO IR Optics

- The IR system integrates two cameras with a shared eight position filter wheel
 - Each camera can image through three bandpass filters.
 - Each camera has a calibration target as its fourth "filter".
 - Heritage filter wheel driven by Cobham stepper motor.
 - One lens is optimized for 7.5 μ m to 13 μ m, the other for 14 μ m to 16.5 μ m.
 - The ability to adjust focus with filter thickness relaxes the axial chromatic correction.

Primitive Object Volatile Explorer (PrOVE)

- PI: Tilak Hewagama, UM
- MSSS's contribution is VisCAM:
 - An ECAM-M50 with custom optics that provides 8m spatial resolution at 300km.
 - ECAM-DVR4 provides power conditioning, camera control, image processing, compression, and storage.
- Instrument Purpose:
 - Provide high spatial resolution mapping of a Jupiter-family comet surface and/or a new comet surface.
 - These maps will provide the first observations of a new comet surface.

VisCAM Instrument—Description

- ECAM-M50 visible camera w/ custom optics
 - 5MP Monochrome CMOS sensor, 2.2μm pixel pitch (2592 x 1944)
 - Custom 132mm, F/4.2 lens (1.9° x 2.5°)
 - FPGA-based architecture
 - 5V power, 100Mbps SpaceWire interface
 - Mass: 600 g
 - 57mm x 78mm x 164mm

Conclusion

- The MSSS ECAM architecture provides viable options for CubeSat applications where high reliability, heritage, and performance are required.
- ECAM system components are built to NASA reliability standards and are now flying on multiple missions (TRL 9).
- ECAM systems can be customized for a range of environments, applications, and configurations.
- This shows that imaging systems with science-driven performance that meet NASA deep space requirements can be compatible with CubeSat missions.